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§ 4.01 Introduction

For many years, computer scientists have been creating environments where
computerised agents can play games against each other. One of the most well-known
examples is the tournament organised by Robert Axelrod in 1981, where participants
programmed agents to play Prisoners’ Dilemma games against other agents. The winner
of this contest was Anatol Rapoport, who used a ‘tit-for-tat” strategy. The tit-for-tat
strategy calls for the agent to “cooperate™ with any agent that has cooperated in the
previous round, but to “defect” if instead the other agent has defected in the previous
round. The fact that the tit-for-tat strategy won the contest was interesting because
many game theory results tended to focus on more severe ‘grim-trigger” strategies,
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which were not as forgiving as Rapoport’s entry. It is worth notin'g. that while
grim-trigger strategies can support cooperation (in subgame pe.rfect equilibrium), the
same is not true for tit-for-tat, as it may not be credible to forgive the other agent for

defecting in a previous round.

It is not surprising that economists and game theorists are interested in exploring how
new Al techniques could be used in similar contests or experiments. Pricing algorithms
are of particular interest. Antitrust lawyers have raised concerns that if AI algorithms
were able to control pricing decisions, were programmed to maximize profits, and had
access to public information about competitors’ prices, then competing firms might
arrive at a collusive outcome without any communication. Indeed, since Al agents aim
to maximize the profits of individual firms, there may be no violation of price-fixing or
antitrust collusion laws.?

Prior to this, the success of using algorithms to price products had been mixed. In
some cases, simple algorithms proved disastrous.

In the Spring of 2011, two online retailers offered copies of Peter Lawrence s textbook
The Making of a Fly on Amazon for $18,651,718.08 and $23,698,655.93 respectively.
This was the result of both sellers using automated pricing algorithms. Everyday, the
algorithm used by seller 1 set the price of the book to be 0.9983 times the price charged
by seller 2. Later in the day, seller 2’s algorithm would adjust its price to be 1.27059
times that of seller 1. Prices increased exponentially and remained over one million
dollars for at least ten days (!), until one of the sellers took notice and adjusted its price
10 $106.23.2

Given this, many economists were initially sceptical that AI algorithms, interacting
at arm’s length and with different interests, could learn and implement collusive
outcomes. In many instances, either communication was explicit, or the colluding
parties adopted simple rules such as dividing up and allocating different markets.?

Despite scepticism, researchers have been inspired to explore certain questions. One
area of investigation examines whether Al predictions of outside factors, like market
demand, can help firms with pricing decisions made by rational economic agents,
ultimately leading to collusion. In this chapter, we will analyze this research direction
and discover that while Al adoption might hurt consumers in situations of tacit
collusion, it could also weaken the circumstances that allow collusion to occur.

Another research focus has been on whether Al algorithms can learn to collude in
typical oligopoly scenarios, such as Bertrand competition. Studies have shown that
machine learning algorithms used by competing firms often lead to higher-than-

1 Ezradn A. a{ld M. Stucke, VIRTUAL COMPETITION, Harvard University Press (2017); Calvano, E., G.
Calzolari, V. Denicolo, and S. Pastorello, Artificial Intelligence, Algorithmic Pricing, and Collusion, 110
(10) AMERICAN ECONOMIC REVIEW 3267-3297 (2020).

2 Salcedo, B., Pricing Algorithms and Tacit Collusion p.2 (2015) (manuscript, on file with Pennsylvania
State University).

? For example, Byford, M.C. and J.8. Gans, Collusion at the Extensive Margin, 37 INTERNATIONAL
JOURNAL OF INDUSTRIAL ORGANIZATION 75-83 (2014),
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competitive prices, although not always reaching the monopoly outcome that is the
usual goal of collusive actions. The latter half of this chapter will provide an overview
of the current research in this area.

§ 4.02 What Does AI Do?

Before considering the potential for Al collusion, it is useful to make clear precisely
what Al we are talking about. This chapter looks at the types of Al that currently exist
under the broad area of machine learning in neural networks. All the recent advances
in Al, including for example AlphaGo and ChatGPT, are based on machine learning. In
that regard, Al only captures a part of what we would normally consider intelligence.

That part is prediction. All recent advances in Al are advances in the statistics of
prediction.# Current Al is not about building machines that can think like humans but
rather about building machines that can predict better than humans. Thus, the value of
Al comes from its ability to predict outcomes more accurately and quickly than humans
can.

Current methods of Al are driven by three key components: data, algorithms, and
computational power. These three components have improved dramatically in recent
years, which has led to significant advances in Al. Al is not a single technology but
rather a collection of technologies that work together to enable prediction. In that
respect, Al can reduce the uncertainty faced by firms when choosing their prices. In the
first part of the chapter, we consider how reducing uncertainty on one key dimension—
demand prediction—can impact the conditions for price collusion. The second part
looks at whether Al agents can learn to collude without human intervention by
predicting the responses of rivals.

§ 4.03 Does Al Prediction of Demand Facilitate Collusion?

[1] In General

First, let us look at how Al predicts demand. In simple terms, market demand in a
certain period depends on the price and an uncertain factor. Al prediction provides a
signal of the uncertain factor.

To illustrate, consider the following stylized example. Suppose that there are two
firms that set prices in each period of an ongoing competition. They sell identical
products, so if they have different prices, the firm with the lower price gets all the
customers. If they have the same price, they share the customers evenly. The realized
market price in each period is always the lowest price.

Without Al prediction, firms must set their prices before knowing the uncertain
demand factor. Since they compete on price, the quantity produced adjusts to meet the

4 Ajay Agrawal, Joshua Gans, and Avi Goldfarb, PREDICTION MACHINES: THE SIMPLE ECONOMICS OF
ARTIFICIAL INTELLIGENCE (Harvard Business Review Press: Boston, 2018).



market demand.® In this situation, the collusive price (when firms cooperate in setting
prices) is determined by a profit-maximizing price based on expected demand.®

Researchers have analyzed collusion in this environment by assuming that firms
follow a “grim-trigger” strategy.” That is, firms will continue to charge the collusive
price and share the market demand as long as the other firm has done so in the past. If
one firm ever deviates and lowers its price (thereby, stealing the other firm’s business
in that period), both firms will thereafter become competitive and set their prices equal
to their costs (in all future periods).

Firms will choose to collude rather than deviate if the short-term gain from deviating
(i.e., undercutting the collusive price and serve the entire market) is smaller than the
long-term loss from foregoing collusion (in all future periods). Thus, firms will choose
to collude rather than deviate if their discount rate is smaller than a certain threshold.
The main question is whether Al prediction changes this threshold or other variables,
such as the collusive price.

When the firms have access to Al prediction, the collusive price can adjust based on
the level of demand predicted by Al For simplicity, suppose that Al prediction offers
a perfect signal of the level of demand. In this case, if both firms adopt AlI, they will
receive the same signal. Firms might consider deviating from the collusive price after
receiving Al predictions. However, they will not deviate if their discount rate is lower
than a certain threshold, and that threshold is lower when AI predicts a higher level of
demand. Thus, collusion is less likely to be sustainable when Al predicts higher levels
of demand. This is consistent with known results that “price wars” are more likely to

occur during periods of high demand.®

[2] Impact of AI on Collusion

Without Al collusive firm profits are lower than those with Al, meaning Al increases
producer surplus (the difference between the revenues earned by firms and their
production costs) when collusion can be sustained (with and without AI). However,
when collusion can be sustained, consumer surplus (the difference between what
consumers are willing to pay and what they actually pay) falls due to AI adoption. This
happens because Al raises consumer surplus when demand is low but reduces it when
demand is high. Overall, when collusion can be sustained, total surplus falls when Al
is adopted, leading to decreased total welfare.

However, the scope for collusion changes with AI adoption. The discount rate
threshold for sustaining collusion is higher when demand is low and lower when
demand is high. Therefore, it is possible that collusion may become unsustainable and

® This is known as the “make-to-order” business model.,

® Gans, J.S., Aniificial Intelligence Adoption in a Monopoly Market, MANAGERIAL AND DECISION
ECoNOMICS, (2023) forthcoming.

7 Miki6s-Thal, J, and C. Tucker, Collusion by Algorithm; Does Better Demand Prediction Facilitare
Coordination Between Sellers? 65 (4) MANAGEMENT SCIENCE 1552-1561 (2019).

® See, e.5., Rotemberg, J. and G, Saloner, A Supergame-Theoretic Model of Price Wars During Booms,
76 AMERICAN ECONOMIC REVIEW 390-407 (1986).
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break down when there is a period of high demand, especially when the probability of
low demand in the future increases. Recall that periods of high demand are periods
where Al adoption exacerbates the consumer harm from collusion. Thus, while
adopting Al under collusion can create some welfare reductions, AI adoption itself may
undermine the ability of a cartel to sustain itself.

[3] Outsourced Pricing Algorithms

The previous analysis doesn’t specify the origin of the algorithms that allow firms to
receive a perfect signal of demand. In many cases, individual firms will not develop
their own Al predictions but will instead buy those predictions or buy the algorithms
that generate them from third-party providers. For example, one study looked at
German gasoline retailers adopting pricing algorithms focused on demand forecasting.®
They found that in non-monopoly markets, algorithm adoption increased profit margins
by 9 percent. In duopoly markets, algorithms had no margin effect if adopted by one
firm but a 28 percent increase when both firms adopted them. This is consistent with
theoretical predictions about the impact of such algorithms on price competition.1®

Another researcher explored whether having third parties provide demand-prediction
algorithms to competing firms might lead to collusive outcomes.** He found that there
is a fundamental difference in the design of algorithms that firms would create for
themselves versus those intended to be sold to multiple firms. The third-party provider
is concerned that its algorithm might compete against itself.

While this might initially seem to cause third parties to provide algorithms that
dampen competition, it does not actually lead to higher prices. The reason is that if an
algorithm provider developed a product that resulted in a higher average price, this
would create value for those who don’t adopt the algorithm. Since the provider wants
to sell their product to more firms at a higher price, having the algorithm reduce
incentives for mutual adoption goes against their goal. Instead, the provider produces
predictions that are more sensitive to demand conditions. As previously argued, the
resulting price variation makes consumers worse off because they face greater exercise
of monopoly power when demand is high. Therefore, consumers are negatively
impacted by third-party provision when the firms have some market power, but that
provision is not a tool for collusive pricing.

® Assad, Stephanic, Robert Clark, Danicl Ershov, and Lei Xu Identifving Algorithmic Pricing
Technology Adoption in Retail Gasoline Markets, AEA PAPERS AND PROCEEDINGS, vol. 112, pp. 457460
(2022).

10 Brown, Z. Y. and A. MacKay, Competition in Pricing Algorithms, AMERICAN ECONOMIC JOURNAL:
MICROECONOMICS (2023).

1u Harrington, J. E., The Effect of Outsourcing Pricing Algorithms on Market Competition, 68 (9)
MANAGEMENT SCIENCE 6889-6906 (2022).



§4.04 Can Als Learn to Collude?

[1] Overview

A significant achievement in Al has been its ability to learn to play games against
humans. In games like Go or Chess, Al trained with reinforcement learning can now
outperform any person. Al can also excel in computer games such as Pong, Atari
games, DOTA, and Quake III.

This led economists to question if Al could be trained to obtain better outcomes in
games that represent competition between firms.

Reinforcement leamning is a process where an Al algorithm is continuously updated
based on its experience playing a game. Strategies that worked well against opponents’
choices in the past are given more importance, while others are given less. Often, Al
gains experience by playing against other Al and learning from shared experiences. For
example, AlphaZero, the best Al at Go, was trained in just a few hours by playing
millions of games against itself. Could a similar outcome be achieved if AI were trained
to play pricing games in oligopolistic markets, particularly those involving repeated
games and history-dependent strategies? In other words, could Al learn to collude?

Initially, economists believed this would not be possible. They argued that reinforce-
ment learning, like other machine learning methods, would fall into a category of
learning behaviors called adaptive leamning.}? Adaptive learning involves choosing
strategies expected to perform best against all possible combinations of strategies based
on the competitor’s recent play history. As a result, agents would learn which strategies
were dominated and avoid playing them, iterating this process over time. In a common
class of games,** where each agent’s best replies were non-decreasing in the strategies
of other agents, every adaptive learning process would converge to a unique Nash
equilibrium (if it existed), even if players could condition their strategies on their rivals’
past play. This would happen even in repeated games, suggesting that Al trained to play
pricing games using reinforcement learning wouldn’t reach an equilibrium or an
outcome with supra-competitive pricing. This is because reinforcement learning doesn’t
allow agents to coordinate future play based on their play histories. However, despite
this initial skepticism, economists started applying reinforcement learning methods to
familiar oligopolistic pricing games to observe the resulting price outcomes.

One notable aspect of the economic research into Al collusion is that it focuses on
learning price equilibria by using existing reinforcement learning methods rather than
examining abstract concepts like perfect prediction or imperfect prediction with a single
parameter capturing prediction quality. This approach results in simulated outcomes,
which can help improve our understanding of how Al algorithms will interact with one
another. In what follows, we will explore Q-learning, a popular research tool, and what
economists have leamed about Al collusion using this method.

*2 Milgrom, P. and J. Roberts, Adaptive and Sophisticated Learning in Normal Form Games, 3 (1)
GAMES AND ECONOMIC BEHAVIOR 82-100 ( 1991).

'3 That is, supermodular games,
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[2] Q-Learning

Q-learning is a widely used tool for implementing reinforcement learning. The “Q”
represents a matrix that records the algorithm’s current assessment of the likely payoff
going forward for the available choices in every possible situation. This tool has proven
useful in dynamic game environments with multiple agents, where they aim to
maximiize a payoff in a repeated game without any information about the model

structure. As a result, economists have become interested in Q-learning to study the
potential for Al-driven collusion.

In a typical scenario, two or more firms are involved in a Bertrand game, where their
action space consists of pricing options. Each AI agent’s goal is to maximize expected
discounted profits over an infinite time horizon. The profits for a firm in each period
depend on the current price set by the firm and the prices of its rivals. The Al agents
play this pricing game without knowledge of the demand function for any player,
making it a “model-free” learning situation. The research questions are: (i) can Al
agents programmed to use Q-learning achieve a stable pricing strategy between them,
and (ii) are those prices similar to competitive prices (i.e., one-shot Nash equilibrium
prices) or to optimal collusive prices? A secondary question involves understanding
whether the learning strategy involves a fixed price chosen by each agent or a
counterfactual strategy, like a grim-trigger strategy or tit-for-tat.

Q-learning in this environment revolves around the Q-matrix, which estimates the
expected present value of profits for each agent when choosing a specific action in a
particular state of the game. The Q-matrix is initialized with arbitrary starting values but
is then updated based on the agent’s experience. The updating process takes into
account the agent’s observed profit from charging a certain price, the current state
(previous prices set by all agents), and the future state resulting from the current prices
of all agents. Strategies that perform well see their corresponding expected values in the
Q-matrix increase, while those that perform poorly experience the opposite. This
reinforcement mechanism pushes the agent towards an optimal outcome.

The choice of action is not purely deterministic, meaning it does not always
maximize the expected value at the time. Instead, the algorithm includes some
“experimentation” and hence randomness that may lead the firm to choose a different
price with a certain probability. This randomness can involve more complex choices in
richer action spaces.}* Such experimentation decreases over time, meaning that the
prices believed to maximize the expected present value of profits become increasingly
more likely to be chosen.

In single-agent decision environments, there are conditions under which Q-leaming
algorithms will converge to the optimal solution. However, no such conditions have
been identified for multi-agent repeated game environments. As a result, research in this
area involves running simulations with different environments and parameters to see if
a stable, equilibrium-like outcome emerges. The following section will discuss stable
and unstable outcomes found by researchers.

14 Such as the Boltzmann algorithm, where the probability of selecting a price is based on the Q-matrix
values,
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[3] Outcomes of Dynamic Games Between AI Agents

Researchers have explored the outcomes of repeated pricing games played by Al
agents.!® In these simulations, the agents interact in a market where products are
differentiated, and each firm aims to maximize profits. The researchers found that the
simulations usually converged to a stable outcome, with the average price consistently
above the competitive (Nash equilibrium) level, resulting in higher profits for the firms.

The research also investigated whether the outcomes were driven by patterns that
normally support collusion, like punishment for deviations in the dynamic game. They
found that when one firm artificially lowered its price, the other firm would respond by
lowering its price, but not necessarily matching the competitor’s price. Both firms
would slowly increase their prices until the previous stable outcome was restored.
Interestingly, this slow response is inconsistent with the theoretical literature on

dynamic competition in repeated games.

[4] Myopic vs. Sophisticated Q-Learning

Further research has explored the limitations of AI algorithms learning to play
competitive stage games without payoffs that depend on future outcomes.!® This

research has found that using Q-learning with asynchronous updating, where the
Q-matrix updates in a certain way, can result in prices converging to a range of different

supra-competitive levels.

Researchers have also explored modifications to Q-learning to allow for more
sophisticated strategies, called synchronous updating. In perfect synchronous updating,
the algorithm can see the prices of competitors and knows the demand and cost
functions. This allows it to calculate what the actual profits would have been had a
different price been chosen based on the state. With perfect synchronous updating, even
when agents are forward-looking, the simulation outcomes accord with theoretical
predictions.

Another more limited form of synchronous updating involves the algorithm updating
in a way that contains the knowledge that demand curves slope downwards. This leads
to a set of convergent solutions: one consistent with competitive pricing and another

with supra-competitive pricing.

These results highlight the impact of the type of updating that algorithms perform on
eventual pricing outcomes. A key question, then, is what type of updating rules firms
might choose. Research shows that using an asynchronous approach is a dominant
strategy for both firms, but understanding what algorithm they might be facing in a

competitor is likely to be a significant issue.”

1% Calvano et al., op.cir.
16 Asker, J., C. Fershtman, A. Pakes, et al,, Artificial Intelligence, Algorithm Design and Pricing, AEA

PAPERS AND PROCEEDINGS, Volume 112, pp. 452-456 (2022),
*7 Asker, )., C. Fershunan, and A. Pakes, The Impact of Al Design on Pricing (Working Paper, 2022).
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§ 4.05 Responses to Al Collusion

[1] In General

The discussions we have had so far about collusion involve markets without any
regulations. Even in these markets, collusion can trigger reactions. For example, some
researchers suggest that consumers could use algorithms to create more competitive
outcomes.?® Others think AI could be used by authorities to identify and prevent
collusion.1®

Now, let us look at situations where an interested party designs the market, and that
party sets the rules for competing sellers. We will discuss two cases: first, a platform
that hosts competing sellers and can decide which sellers to promote; second, an
auction environment where one seller is trying to earn more revenue from buyers who
compete to buy a product but may also collude to keep prices low. In both cases, we
will see that some lessons from using Al prediction to help agents learn can also be used
to develop strategies that counteract collusion.

[2] Platforms

In our previous analysis, we looked at traditional collusion environments with
several competing firms. Recently, there has been an interest in situations where firms
compete on a platform, like a marketplace or exchange that connects buyers and sellers.
A platform with a monopoly might want to ensure that competition between sellers
works in its favour, so it is important to ask whether platforms can manage competition
when sellers use algorithms that could lead to collusion.

One study examined this question by examining platform rules that direct customers
to sellers offering the lowest prices.2® The idea is that the platform promotes a certain
number of sellers with the lowest prices, making it harder for others to be noticed. This
can create a trade-off for the platform, as promoting low prices may lead to fewer
sellers and less variety for customers. The study showed that platforms typically use
steering techniques to lower prices enough to compensate customers for the reduced
variety. However, if sellers can collude, these steering methods become less effective,
and the platform may need to use more complicated mechanisms to encourage

competition.

One way to deal with collusion between sellers is for the platform owner to use a
dynamic price-directed mechanism to decide which sellers get promoted. In this
approach, one seller is chosen for prominence based on their low price, and they can
keep that position for a certain amount of time as long as they don’t raise their price,

18 Gal, M. S. and N. Elkin-Koren, Algorithmic Consumers, 30 HARVARD JOURNAL OF LAW AND
TECHNOLOGY 309 (2016).

1% Calvano, E., G. Calzolari, V. Denicold, J. E. Harrington Jr, and S. Pastorello, Protecting Consumers
From Collusive Prices Due to Al, 370 (6520) SCIENCE 1040-1042 (2020).

20 jJustin Johnson, Andrew Rhodes, and Matthijs R. Wildenbeest, “Platform Design When Sellers Use
Pricing Algorithms" (mimeo. Comell, 2020), available at hitps://papers.ssm.com/sol3/papers.cfm?abstract_
id=3691621.



and no one else undercuts it by more than a set amount. This mechanism makes j
harder for sellers to collude because it rewards a seller for deviating from the collusive
outcome. The study showed that there are situations where the platform wants to yse
these mechanisms to break collusion in a way that increases both its own profits and

consumer benefits.

What about the role of Al in this context? The same study conducted experiments
with sellers using Al algorithms capable of Q-learning to see if the platform’s
competition-promoting strategies (which can also be implemented algorithmically)
could improve platform profits and consumer benefits. The results showed that simple
price-directed steering could reduce prices and increase benefits when there’s not too
much product differentiation. The study also found that when sellers use Q-learning, the
dynamic price-directed prominence strategy can significantly lower prices if one seller

is promoted to nearly all customers.

[3] Auctions

Auctions are used by people on either the buying or selling side of a market to
encourage competition among people on the other side. For example, buyers might use
auctions to create competition and hence purchase goods at lower prices, while sellers
might use them to obtain higher prices from buyers. The auction rules can impact the
benefits for the person who designed the auction. Until now, we have focused on
competition among sellers, but in this section, we will discuss the use of Al by buyers
in auction settings. This is important because the most intense auctions nowadays are
for advertising space, where the bidders are advertisers seeking to buy space. These
auctions take place in real time when users search for information or visit websites.

We will look at how Al agents, acting on behalf of buyers, bid in two different types
of auctions: first and second-price sealed-bid auctions. In these auctions, bidders submit
a price (their bid) to the auctioneer, and the auctioneer sells the product to the highest
bidder. In the first-price auction, the winner pays their bid amount, while in a
second-price auction, the winner pays the amount of the second-highest bid. When
buyers have only private values for the product (meaning their values are not related to
the values of other buyers), both auction designs bring in the same expected revenue for
the seller.2! Notably, in a second-price auction, it is a dominant strategy for bidders to

submit bids equal to their willingness to pay.

One study used Q-learning algorithms with two competing bidders to see if the
bidders could submit bids that resulted in low revenue for the seller.22 They found that
the second-price auction led to more competitive outcomes than the first-price auction.
This is not surprising, considering our previous discussions. First, the first-price auction
is similar to a type of competition we have seen before which results in higher-than-

2 “This revenue equivalence result assumes that bidders are risk-neutral and ex anfe symmetric.
Milgrom, Paul R., and Robert J, Weber, “A Theory of Auctions and Competitive Bidding." ECONOMETRICA,
1982: 1089-1122.

#2 Banchio, M. and A. Skezypacz, Artificial Intelligence and Auction Design, Proceedings of the 23rd
ACM Conference on Fconomics and Computation, pp, 30-31 (2022),
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competitive profits, meaning lower revenue for the seller in the present auction context.
Second, the second-price auction has a dominant strategy, and we have seen that
Q-learning works well in finding dominant strategies. In the second-price auction,
bidding according to one’s willingness to pay is the dominant strategy, which leads to
high revenue for the seller.

Interestingly, it was found that more competitive outcomes could be created in the
first-price auction by giving Al agents information on the winning bid. With this
information, the Al agents can update their learning using “what-if”’ scenarios regarding
how different bid choices might have resulted in different outcomes. This approach is
similar to one we have seen before in a different context. As in the case of regular
market competition, providing more sophistication to Al algorithms leads to more
competitive outcomes. However, this does not mean that buyers with Al at their
disposal will necessarily choose to use these “smarter” Als for bidding.

§ 4.06 Conclusion

This chapter has explored the implications and applications of AI and machine
learning in various market settings, focusing on collusion and responses to collusion,
including platform design and bidding in auction markets. We have seen that Al can
both facilitate collusion and be used to counteract it. Platforms can implement specific
mechanisms to promote competition and prevent collusion among sellers, while buyers
in auctions can utilise Al algorithms to achieve more competitive outcomes.

The insights demonstrate the diverse and powerful ways Al can be employed in
modern markets. As Al continues to advance and become more sophisticated, it is
crucial for researchers, policymakers, and market participants to understand and
harness its potential to promote competitive markets and prevent anti-competitive
behaviour. Thus, while it is premature to imagine that there will be significant use of
Al to generate collusive outcomes yet, the future remains open, and there may be
requirements for antitrust law to evolve and consider such possibilities.



